The flowchart includes steps such as data handling, noise injection, and publishing the final results.
Code example:
import numpy as np
def laplace_mechanism(data, sensitivity, epsilon):
"""
Inject noise using the Laplace mechanism
:param data: Raw Data
:param sensitivity: Sensitivity (A constant, representing the sensitivity to changes for each individual)
:param epsilon: Privacy Parameter
:return: Result after injecting noise
"""
noise = np.random.laplace(loc=0, scale=sensitivity/epsilon)
return data + noise
# Sample Data
original_data = 100
# Sensitivity, e.g., for a count query, is 1.
sensitivity = 1
# Privacy Parameter
epsilon = 0.1
# Inject noise using the Laplace mechanism
noisy_result = laplace_mechanism(original_data, sensitivity, epsilon)
print("Original Data:", original_data)
print("Noisy Result:", noisy_result)